Birkhoff Interpolation and the Problem of Free Matrices*

G. G. Lorentz
Department of Mathematics, University of Texas, Austin, Texas 78712
Communicated by Oved Shisha

DEDICATED TO PROFESSOR J. L. WALSH ON THE OCCASION OF HIS 75TH BIRTHDAY

1. Introduction

An incidence matrix for the polynomials of degree n is an $m \times(n+1)$ matrix

$$
\begin{equation*}
E=\left(\epsilon_{k l}\right), \quad k=1, \ldots, m, \quad l=0, \ldots, n \tag{1.1}
\end{equation*}
$$

with elements $\epsilon_{k l}$ that take values 0 and 1. A scheme S is the set consisting of an incidence matrix E and of m points $a \leqslant x_{1}<x_{2}<\cdots<x_{m} \leqslant b$; a Birkhoff interpolation problem is the problem of finding a polynomial P of degree n that satisfies, for the given data $b_{k l}$, the condition

$$
\begin{equation*}
P^{(l)}\left(x_{k}\right)=b_{k l},(k, l) \in e \tag{1.2}
\end{equation*}
$$

(e is the set of pairs $\left(k, l\right.$) for which $\epsilon_{k l}=1$). (Named after G. D. Birkhoff, who submitted the paper [2] to the American Mathematical Society at the age of 20).

Schoenberg [5] proposed the problem to describe all free (or poised) matrices E, for which the problem (1.2) has a solution for each choice of the x_{k} and the $b_{k l}$. We can assume that the set e has $|e| \leqslant n+1$ elements; if $|e|=n+1$, the problem always has a solution if and only if each polynomial P of degree n that vanishes on the scheme S [that is, satisfies the homogeneous Eq. (1.2)] is identically zero.

Let M_{l} denote the number of 1 's in the rows $j=0, \ldots, l$ of E. Of importance are the following conditions:

$$
\begin{equation*}
M_{l} \geqslant l+1, l=0,1, \ldots, n \tag{1.3}
\end{equation*}
$$

[^0](the Pólya condition) and
\[

$$
\begin{equation*}
M_{l} \geqslant l+2, l=0,1, \ldots, n-1 \tag{1.4}
\end{equation*}
$$

\]

(the strong Pólya condition). Each free matrix satisfies (1.3).
A supported sequence of E is a maximal sequence of 1 's in a row of E,

$$
\epsilon_{i_{0} j_{0}}=\cdots=\epsilon_{i_{0} J}=1
$$

which is supported: there exist $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right)$ for which $i_{1}<i_{0}<i_{2}$, $j_{1}, j_{2}<j_{0}$ and $\epsilon_{i_{1} j_{1}}=\epsilon_{i_{2} j_{2}}=1$. Atkinson and Sharma [1] (see also [4]) proved that E is free if it satisfies (1.3) and if each of its supported sequences is even (that is, it has an even number of elements). They proposed the conjecture that if E satisfies (1.4), their condition is also necessary for E to be free. This proved to be incorrect [4].

In this note we describe a wide class of nonfree matrices E. Although technically more difficult, the proof of our main result is based on ideas that appear in Theorem 2 of the paper [4].

2. Remarks about Identities

We shall relate our problem to the existence of certain identities for polynomials P of degree n. There does not seem to exist a theory of such identities. They have been of importance also for the problem of monotone approximation [3].

Proposition. A scheme given by the points $x_{0}<\cdots<x_{m}$ and an incidence matrix E is not free if and only if there exists a nontrivial identity

$$
\begin{equation*}
\sum_{(i, j) \in e} a_{i j} P^{(j)}\left(x_{i}\right)=0 \tag{2.1}
\end{equation*}
$$

valid for all polynomials P of degree n.
Proof. We consider the $n+1$-dimensional space R^{n+1} with points $\xi=\left(\xi_{0}, \ldots, \xi_{n}\right)$; in particular, let

$$
\begin{array}{r}
\xi_{i j}=\left\{n \cdots(n-j+1) x_{i}^{n-j},(n-1) \cdots(n-j) x_{i}^{n-j-1}, \ldots, j!, 0, \ldots, 0\right\} \\
(i, j) \in e . \tag{2.2}
\end{array}
$$

The scheme is not free precisely when the points (2.2) are linearly dependent; this is equivalent to the existence of constants $a_{i j}$, not all zero, with the property that in R^{n+1},

$$
\begin{equation*}
\sum a_{i j} \xi_{i j}=0 . \tag{2.3}
\end{equation*}
$$

Applying here any functional $L(\xi)=a_{0} \xi_{0}+\cdots+a_{n} \xi_{n}$, and noticing that $L\left(\xi_{i j}\right)=P^{(j)}\left(x_{i}\right)$ for the corresponding $P(x)=a_{0} x^{n}+\cdots+a_{n}$, we see that (2.1) is equivalent to (2.3) for all P.

Example. For P of degree 2 one shows that an identity of type (2.1), which contains a value of P itself, must be of the form

$$
\begin{equation*}
P^{\prime}\left(\frac{a+b}{2}\right)(b-a)=P(b)-P(a) . \tag{2.4}
\end{equation*}
$$

It follows that the only nonfree matrix for polynomials of degree 2 that satisfies (1.3) is the matrix

$$
E=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Several "strange" identities of type (2.1) have been constructed in [3, Section 5]. In particular,

1. For n even, k odd and $1 \leqslant k \leqslant n-1$, there exists an identity (2.1) for polynomials of degree n that contains $n-2$ values of P and 2 values of $P^{(k)}$. Here the total number of nonzero terms in (2.1) is n [3, Theorem 14].
2. If n is odd, there exists an identity (2.1) containing $(n+3) / 2$ values of $P,(n-1) / 2$ values of P^{\prime} [3, Theorem 15].
3. If $3 \leqslant m \leqslant n+2$ is of the same parity with n, there exists an identity (2.1) with altogether $(n+m) / 2+1$ terms, m of them values of P, and $(n-m) / 2+1$ first derivatives [3, Theorem 16]. In particular, if n is odd, there could be 3 values of P_{n}, and $(n-1) / 2$ values of P^{\prime}, altogether only $(n+5) / 2$ values.

3. The Main Result

Theorem. Let E be an incidence matrix which satisfies (1.3) and has a row with exactly one supported odd sequence. Then E is not free.

We shall use the following known facts about polynomials:
Lemma 1 (Rolle's theorem). If $\alpha<\beta$ are two consecutive real roots of a polynomial P, then the number of the roots of the derivative P^{\prime} in (α, β) is odd.

Lemma $2[4,6]$. If $d=d_{n}=\left(4 n^{2}\right)^{-1}, n>0$, and if $\alpha<\beta$ are two roots of a polynomial P of degree n, then $P^{\prime}(\xi)=0$ for some $\xi=[\alpha+2 d l, \beta-2 d l]$, $l=\beta-\alpha$.

Let $p_{j} \leqslant k \leqslant q_{j}, j=1,2, \ldots$, be the locations of the supported sequences of the i-th row of E, and let $j=j_{0}$ correspond to the odd sequence. We write $p=p_{j_{0}}, q=q_{j_{0}}$.

We define a very special scheme S for the matrix E. We consider the points of $(-1,1)$,

$$
\begin{equation*}
y_{-i}=-1+N^{-i}, \quad y_{i}=1-N^{-i}, \quad i=1,2, \ldots \quad N=d^{-n-1} \tag{3.1}
\end{equation*}
$$

We define S by assigning to the $i-1$-st row of E the point y_{-2}, to the $i+1$-st row $-y_{2}$, to the $i-2$-nd row the point y_{-3}, and so on. To the i-th row we assign the variable point $\lambda, y_{-1} \leqslant \lambda \leqslant y_{1}$.

Let E^{\prime} be the matrix obtained from E by replacing the value $\epsilon_{i q}=1$ by 0 , and S^{\prime} the corresponding scheme. Since each system of n homogeneous linear equations with $n+1$ unknowns has a nontrivial solution, there exist polynomials P of degree n, that vanish on S^{\prime} without vanishing identically.

We fix one of these polynomials P, and study its "Rolle zeros". These are the zeros of P and of its derivatives which are specified by S^{\prime}, and also those that can be derived from them by the use of Rolle's theorem.

More precisely, the Rolle zeros of P are defined inductively in k for each derivative $P^{(k)}, 0 \leqslant k \leqslant n$. The Rolle zeros of $P^{(0)}$ are the zeros of P given by the scheme S^{\prime}. Let the Rolle zeros of $P^{(k-1)}$ be known. We define those of $P^{(k)}$ (and some zeros of the higher derivatives) in the following way. Let α, β be two consecutive Rolle zeros of $P^{(k-1)}$. It may happen that (α, β) contains an even number (counting their multiplicity) of zeros of $P^{(k)}$, specified by S^{\prime}. Then, by Lemma $1,(\alpha, \beta)$ contains an additional zero of $P^{(k)}$. If it is possible, we select this zero ξ to be different from all zeros previously known. If it is impossible (case of degeneracy), then there must be a multiple root ξ, specified by S^{\prime}, and this root must have a multiplicity at least one unit larger than specified. In this case ξ is added as a root of a corresponding higher derivative of P. In all cases, we say that ξ has been obtained by combining α and β.

The Rolle zeros of $P^{(k)}$ are all ξ obtained in this way together with the zeros of $P^{(k)}$ specified by S^{\prime}. (There may be several possible choices of Rolle zeros). On (y_{-2}, y_{2}), degeneracy can occur only if $\alpha<\lambda<\beta$ and only if $k=p_{j}$ for one of the supported sequences. In case of degeneracy λ will be the Rolle zeros of $P^{\left(q_{j}+1\right)}, j \neq j_{0}$, and if $j=j_{0}$, of $P^{(q)}$. If this happens, we shall say that there is a loss of a zero for the k-th derivative $k=p_{j}$, and a gain of a zero for $k=q_{j+1}$ (or $k=q$).

The points (3.1) have been so selected that there is no degeneracy for $\xi<y_{-2}$ or $\xi \geqslant y_{2}$. This follows from Lemma 2 (see [4] or Lemma 3 below).

We count the number of Rolle zeros of $P^{(k)}$. For $k=0, P_{n}$ has exactly $m_{0}=M_{0} \geqslant 2$ zeros. Let $k<q$. By induction in k we see that $P^{(k)}$ has
$M_{k}-k \geqslant 2$ zeros, unless there is a loss. A loss can happen only at $\xi=\lambda$, and then λ will be a zero until the next gain. After the gain, there will be again $M_{k}-k \geqslant 2$ Rolle zeros. This will continue until $k=q$. From here on, we have to replace M_{k} by $M_{k}-1$, since the 1 at the place (i, q) has been replaced by 0 in the matrix E^{\prime}. Thus, by (1.4), the number of Rolle zeros of $P^{(k)}$ will be $\geqslant 1, k \leqslant n-1$. This will be even true in case of a loss, for then, until the next gain, λ will provide a known zero. We have shown: The number of Rolle zeros of $P^{(k)}$ in $(-1,1)$ is independent of the position of λ in $\left[y_{-1}, y_{1}\right]$, except for

$$
\begin{equation*}
p_{j} \leqslant k \leqslant q_{j}, j \neq j_{0} \text { or } p \leqslant k<q . \tag{3.2}
\end{equation*}
$$

For $0 \leqslant k \leqslant n-1, P^{(k)}$ has either at least two zeros, or at least the zero λ.
Assume now that we somehow have found an additional zero of $P^{(k)}$ in $\left(y_{-2}, y_{2}\right)$, or have proved that one of the Rolle zeros (other than λ) in this interval is a double zero. Then the above count gives one additional zero for each derivative, now even for $P^{(n)}$. Then P must identically vanish, a contradiction. Thus, all Rolle zeros in $\left(y_{-2}, y_{2}\right)$, other than λ, are simple, and there are no other zeros in this interval.

It also follows that each polynomial of degree $n-1$ that vanishes on S^{\prime}, is identically zero. Hence our P are of degree exactly n. We norm P by making the highest coefficient to be 1 , and obtain then, for each $\lambda, y_{-1} \leqslant \lambda \leqslant y_{1}$, a unique polynomial $P(x, \lambda)=x^{n}+a_{1}(\lambda) x^{n-1}+\cdots+a_{n}(\lambda)$, vanishing on S^{\prime}. The coefficients a_{i} are obtainable from n linear equations with n unknown a_{1}, \ldots, a_{n}, which have a unique solution for each λ. Hence the determinant of the system is not zero, $y_{-1} \leqslant \lambda \leqslant y_{1}$, so that a_{1}, \ldots, a_{n} are continuous functions of λ. Our intention is to study the roots of $P^{(\theta)}(x ; \lambda)$; under certain conditions they also will be continuous functions of λ, and choosing λ properly, we can make one of them equal to λ. We then will have a nonzero polynomial P vanishing on S, and thus prove our theorem.
About the distribution of Rolle zeros of $P(x, \lambda)$ for different λ, $y_{-1} \leqslant \lambda \leqslant y_{1}$, we have the following:

Lemma 3. For each n, there exists a number $\delta, 0<\delta<y_{2}-y_{1}$ with the following properties:
(i) All Rolle zeros of P in $\left(y_{-2}, y_{2}\right)$ actually lie in $J_{1}=\left(y_{-1}-\delta, y_{1}+\delta\right)$; all Rolle zeros that can be derived from Rolle zeros in J_{1} lie again in J_{1}.
(ii) Let $\lambda=y_{-1}$ or $\lambda=y_{1}$. Then all Rolle zeros of the interval $\left(y_{-1}, y_{1}\right)$ lie actually in $J_{2}=\left(y_{-1}+\delta, y_{1}-\delta\right)$; all Rolle zeros that can be derived from these lie again in J_{2}; each Rolle zero obtained from two zeros, one negative and the other positive, lies in J_{2}.
(iii) Let $\lambda=y_{1}$. Then all Rolle zeros of the interval $\left(y_{1}, y_{2}\right)$ are actually in $J_{3}=\left(y_{1}, y_{1}+\delta\right)$. A Rolle zero derived from a zero to the left of y_{1} and one to the right of y_{1} lies in J_{2}.
(iv) There is no degeneracy for the Rolle zeros in $\left[-1, y_{-2}\right]$ and $\left[y_{2}, 1\right]$; Rolle zeros derived from a zero in one of these intervals, and a zero outside, lie in J_{1}.

Proof. We prove only (i), the other proofs being similar (compare also [4]). The proof is by induction in k. For $k=0$, there are no Rolle zeros of P_{n} in $\left(y_{-2}, y_{2}\right)$, except perhaps λ. A Rolle zero ξ of $P_{n}{ }^{\prime}$ could come form a zero $\alpha \leqslant y_{-2}$ and a zero $\beta \geqslant y_{-1}$, or from a zero $\alpha \leqslant y_{1}$ and a zero $\beta \geqslant y_{2}$. For all these positions, $\alpha=-1, \beta=y_{-1}$ and $\alpha=y_{1}, \beta=1$ and the intervals of Lemma 2 provide a lower and an upper bound for ξ. It follows that $\xi \in\left[-1+2 d\left(1-y_{1}\right), 1-2 d\left(1-y_{1}\right)\right]$. Similarly, Rolle zeros of $P_{n}^{\prime \prime}$, derivable from these ξ, or by combining a point $\leqslant y_{-2}$ with a point $\geqslant y_{2}$, lie in the interval $\left[-1+4 d^{2}\left(1-y_{1}\right), 1-4 d^{2}\left(1-y_{1}\right)\right]$, and so on. For all k, Rolle zeros of $\left(y_{-2}, y_{2}\right)$ lie in $\left[-1+2^{n} d^{n}\left(1-y_{1}\right), 1-2^{n} d^{n}\left(1-y_{1}\right)\right]$. Thus, for the purpose of (i), one can take $\delta=d^{n+1}\left(1-2^{n} d^{n}\right)<y_{2}-y_{1}$.

We shall count certain categories of Rolle zeros in $[-1,+1]$, especially those of $P^{(q)}$. We shall show that the number of some of them is independent of the position of λ in $\left[y_{-1}, y_{1}\right]$, and that the number of others, in the contrary, changes with λ. The desired information can be derived from Lemma 3. We introduce the following notations. Let $m_{k}{ }^{\prime}, l_{k}, m_{k}^{\prime \prime}$ denote the number of l's in the k-th column of E, and, respectively, the first $i-1$, the i-th, or the last $n-i$ rows. Let $X_{k}{ }^{\prime}, R_{k}, X_{k}^{\prime \prime}, R_{k}(\lambda)$ denote the number of Rolle zeros of $P^{(k)}$, respectively, in the intervals [$-1, y_{-2}$], $\left(y_{-2}, y_{2}\right)$, [$\left.y_{2}, 1\right],\left(\lambda, y_{2}\right)$; in particular, let $R_{q}=r$.

We can show that R_{k} is independent of λ, if k does not belong to the intervals (3.2). This has been shown above for the total number of Rolle zeros of $P^{(k)}$. It is sufficient to add that $X_{k}{ }^{\prime}, X_{k}^{\prime \prime}$ are independent of λ. For $k=0$ this is clear immediately. For the general case it follows from Lemma 3(iv) that

$$
\begin{equation*}
X_{k}^{\prime}=\left(X_{k-1}^{\prime}-1\right)_{+}+m_{k}^{\prime}, \quad X_{k}^{\prime \prime}=\left(X_{k-1}^{\prime \prime}-1\right)_{+}+m_{k}^{\prime \prime} \tag{3.3}
\end{equation*}
$$

and our statement follows by induction.
All zeros, except λ, of $P^{(q)}$ in $\left(y_{-2}, y_{2}\right)$ are simple. This is true also of λ itself (λ can become a Rolle zero of $P^{(q)}$ only as a zero gain), because S^{\prime} does not specify λ as a zero of $P^{(q+1)}$. For $P^{(q)}$ we can use the following known (compare [3]) lemma:

Lemma 4. Let $Q(x, \lambda)$ be a polynomial in x, that depends continuously on the real argument λ. If all zeros of Q in $[a, b]$ lie in $[a+\delta, b-\delta], \delta>0$,
and are simple, then their number r does not depend upon λ. Enumerated in order of their magnitude

$$
\begin{equation*}
x_{1}(\lambda)<\cdots<x_{r}(\lambda) \tag{3.4}
\end{equation*}
$$

they are continuous functions of λ.
We shall now prove that

$$
\begin{equation*}
R_{k}\left(y_{1}\right)<R_{k}\left(y_{-1}\right), \quad p \leqslant k \leqslant q . \tag{3.5}
\end{equation*}
$$

First let $y=y_{i}$. By Lemma 3(iii), Rolle zeros of $P^{(k)}$ in $\left(y_{1}, y_{2}\right)$ are obtainable only by combining Rolle zeros of $P^{(k-1)}$ in this interval and λ with each other or with zeros of $\left[y_{2}, 1\right]$. Therefore

$$
\begin{equation*}
R_{k}\left(y_{1}\right)=\left(l_{k-1}+R_{k-1}\left(y_{1}\right)+\epsilon_{k-1}^{\prime \prime}-1\right)_{+}, \tag{3.6}
\end{equation*}
$$

where $\epsilon_{k-1}^{\prime \prime}=1$ if $X_{k-1}^{\prime \prime}>0, \epsilon_{k-1}^{\prime \prime}=0$ otherwise.
For $\lambda=y_{-1}$, Rolle zeros of $P^{(k)}$ in (λ, y_{2}) are described by Lemma 3(ii), (iii). This time we have

$$
\begin{equation*}
R_{k}\left(y_{-1}\right)=\left(\epsilon_{k-1}^{\prime}+R_{k-1}\left(y_{-1}\right)+\epsilon_{k-1}^{\prime \prime}-1\right)_{+} \tag{3.7}
\end{equation*}
$$

where $\epsilon_{k-1}^{\prime}=1$ if there are Rolle zeros of $P^{(k-1)}$ in $\left[-1, y_{-1}\right]$, and $=0$ otherwise. Thus $\epsilon_{k-1}^{\prime} \geqslant l_{k-1}$, and from (3.6) and (3.7) we derive $R_{k}\left(y_{-1}\right) \geqslant R_{k}\left(y_{1}\right)$. Moreover, we have here the strict inequality if for this k,

$$
\begin{equation*}
\epsilon_{k-1}^{\prime}=1>l_{k-1}=0 \quad \text { and } \quad R_{k-1}\left(y_{-1}\right)+\epsilon_{k-1}^{\prime \prime} \geqslant 1 \tag{3.8}
\end{equation*}
$$

Once the properties (3.8) have been established for some k, inequality (3.5) will continue to hold for all larger k.

The reason for this is as follows. According to Lemma 3(ii), (3.8) produces a zero ξ of $P^{(k)}$ in J_{2}. This ξ, combined with any other zero, produces again a zero in J_{2}. There are zeros to combine with this ξ, for $P^{(k)}$ has either at least two zeros, or else $\lambda \neq \xi$ as a zero. Thus there will be a zero ξ^{\prime} of $P^{(k+1)}$ in J_{2}. This shows that $R_{k+1}\left(y_{-1}\right)>0$. But then by (3.7) and (3.6), $R_{k+1}\left(y_{-1}\right)$ $=\epsilon_{k}^{\prime}+R_{k}\left(y_{-1}\right)+\epsilon_{k}^{\prime \prime}-1>R_{k+1}\left(y_{1}\right)$. Similarly for $k+2$ and so on.

It remains to establish (3.8). We show that for arbitrary $\lambda, y_{-1} \leqslant \lambda \leqslant y_{1}$, there is a $k<p$, for which: λ is not a root of $P^{(k)}$, but there are Rolle zeros of $P^{(k)}$ both to the right and the left of λ. Let $\epsilon_{i_{1} j_{1}}=\epsilon_{i_{2} j_{2}}=1$ be the two elements that support $\epsilon_{i p}=1$. Then $P^{\left(j_{1}\right)}$ has a Rolle zero to the left of λ, and $P^{\left(j_{2}\right)}$ a zero to the right of λ, with $j_{1}<p, j_{2}<p$. Assume that there are $\nu, j_{2}<\nu<p$, for which there is no Rolle zero of $P^{(\nu)}$ to the right of λ. Let ν be the smallest such integer. Then there is just one Rolle zero of $P^{(\nu-1)}$ to the right of λ. Moreover, λ is not a zero itself. But then $P^{(v-1)}$ must have at least two Rolle zeros, hence there is at least one zero to the left of λ.

Thus, we can assume that for each $\nu, j_{2}<v<p$, there is a zero to the right of λ, and similarly, for each $\nu, j_{1}<\nu<p$, there is a zero to the left of λ. Then we can take $k=p-1$.

Now it is easy to complete the proof. Consider the curves (3.4), $\mu=x_{i}(\lambda)$, $i=1, \ldots, r$, and the straight line $\mu=\lambda$. For $\lambda=y_{-1}$ there are more curves (3.4) above the straight line than for $\lambda=y_{1}$. Therefore, for some λ_{0}, $y_{-1}<\lambda_{0}<y_{1}$, the straight line intersects one of the curves. This means that $P^{(q)}\left(x, \lambda_{0}\right)$ has the zero $x=\lambda_{0}$. Hence P vanishes on S.

References

1. K. Atkinson and A. Sharma, A partial characterization of poised Hermite-Birkhoff interpolation problems. SIAM J. of Numer. Anal. 6 (1969), 230-235.
2. G. D. Birkhoff, General mean value and remainder theorems with applications to mechanical differentiation and integration, Trans. Amer. Math. Soc. 7 (1906), 107-136.
3. G. G. Lorentz and K. L. Zeller, Monotone approximation by algebraic polynomials, Trans. Amer. Math. Soc. 149 (1970), 1-18.
4. G. G. Lorentz and K. L. Zeller, Birkhoff interpolation, SIAM J. of Numer. Anal. 8 (1971), 43-48.
5. I. J. Schoenberg, On Hermite-Birkhoff interpolation, J. Math. Anal. Appl. 16 (1966), 538-543.
6. P. Turan, On rational polynomials, Acta Univ. Szeged. 11 (1946), 106-113.

[^0]: * Supported by contract no. AFOSR-69-1826 of the office of Scientific Research, U. S. Air Force. Submitted to the American Math. Society, Nov. 3, 1969.

