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1. INTRODUCTION

An incidence matrix for the polynomials of degree n is an m x (n + 1)
matrix

k = 1,... , m, 1= 0,... , n (1.1)

with elements €kl that take values °and 1. A scheme S is the set consisting
of an incidence matrix E and of m points a ~ Xl < X 2 < ... < X m ~ b; a
Birkhoff interpolation problem is the problem of finding a polynomial P of
degree n that satisfies, for the given data bk1 , the condition

(1.2)

(e is the set of pairs (k, I) for which €kl = 1). (Named after G. D. Birkhoff,
who submitted the paper [2] to the American Mathematical Society at the
age of 20).

Schoenberg [5] proposed the problem to describe all free (or poised)
matrices E, for which the problem (1.2) has a solution for each choice of
the Xk and the bk1 • We can assume that the set e has Ie I ~ n + 1 elements;
if I e I = n + 1, the problem always has a solution if and only if each
polynomial P of degree n that vanishes on the scheme S [that is, satisfies
the homogeneous Eq. (1.2)] is identically zero.

Let M 1 denote the number of l's in the rows j = 0, ... , I of E. Of importance
are the following conditions:

M 1 ;? 1+ 1, 1=0, 1,... , n (1.3)
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(the P6lya condition) and

M l ?" 1+ 2, I = 0, 1,... , n - 1 (1.4)

(the strong P6lya condition). Each free matrix satisfies (1.3).
A supported sequence of E is a maximal sequence of I's in a row of E,

which is supported: there exist (iI' jl), (i2 , j2) for which i1 < io < i2 ,
jl,j2 <jo and Eij = Eij = 1. Atkinson and Sharma [1] (see also [4])

1 1 2 2

proved that E is free if it satisfies (1.3) and if each of its supported sequences
is even (that is, it has an even number of elements). They proposed the
conjecture that if E satisfies (1.4), their condition is also necessary for E to be
free. This proved to be incorrect [4].

In this note we describe a wide class of nonfree matrices E. Although
technically more difficult, the proof of our main result is based on ideas
that appear in Theorem 2 of the paper [4].

2. REMARKS ABOUT IDENTITIES

We shall relate our problem to the existence of certain identities for
polynomials P of degree n. There does not seem to exist a theory of such
identities. They have been of importance also for the problem of monotone
approximation [3].

PROPOSITION. A scheme given by the points Xo < ... < Xm and an incidence
matrix E is not free if and only if there exists a nontrivial identity

'" a··p(j)(x·)=O~ ~3 '2. ,

(i,j)Ee

(2.1)

valid for all polynomials P of degree n.

Proof We consider the n + I-dimensional space Rn+l with points
g = (go ,... , gn); in particular, let

gij = {n ... (n - j + I)x;-j, (n - 1) ... (n - j)x7-i-l, ... , j!, 0,... , O},

(i,j) E e. (2.2)

The scheme is not free precisely when the points (2.2) are linearly dependent;
this is equivalent to the existence of constants aij, not all zero, with the
property that in Rn+\

(2.3)
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Applying here any functional L(t) = aoto + ... + antn, and noticing that
L(tii) = P(i)(Xi) for the corresponding P(x) = aoxn + ... + an, we see that
(2.1) is equivalent to (2.3) for all P.

EXAMPLE. For P of degree 2 one shows that an identity of type (2.1),
which contains a value of P itself, must be of the form

P' (a ~ b) (b - a) = P(b) - P(a). (2.4)

It follows that the only nonfree matrix for polynomials of degree 2 that
satisfies (1.3) is the matrix

(
1 0 0)

E= 010.
100

Several "strange" identities of type (2.1) have been constructed in [3,
Section 5]. In particular,

1. For n even, k odd and 1 :'( k :'( n - 1, there exists an identity
(2.1) for polynomials of degree n that contains n - 2 values of P and 2 values
of P<kl. Here the total number of nonzero terms in (2.1) is n [3, Theorem 14].

2. If n is odd, there exists an identity (2.1) containing (n + 3)/2 values
of P, (n - 1)/2 values of P' [3, Theorem 15].

3. If 3 :'( m :'( n + 2 is of the same parity with n, there exists an identity
(2.1) with altogether (n + m)/2 + 1 terms, m of them values of P, and
(n - m)/2 + 1 first derivatives [3, Theorem 16]. In particular, if n is odd,
there could be 3 values of Pn , and (n - 1)/2 values of P', altogether only
(n + 5)/2 values.

3. THE MAIN RESULT

THEOREM. Let E be an incidence matrix which satisfies (1.3) and has a
row with exactly one supported odd sequence. Then E is not free.

We shall use the following known facts about polynomials:

LEMMA 1 (Rolle's theorem). If ex < f3 are two consecutive real roots of
a polynomial P, then the number of the roots of the derivative P' in (ex, f3) is odd.

LEMMA 2 [4, 6]. If d = dn = (4n2)-1, n > 0, and if ex < f3 are two roots
ofa polynomial P ofdegree n, then pim= 0 for some t = [ex + 2dl, f3 - 2dl],
1= f3 - ex.
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Let Pi ~ k ~ qi ,j = 1, 2,... , be the locations of the supported sequences
of the i-th row of E, and let j = jo correspond to the odd sequence. We
write P = Pi

0
' q = qi

0
•

We define a very special scheme S for the matrix E. We consider the
points of (- I, 1),

Y-i = -I + N-i, Yi = I - N-i, i = 1,2,... N = d- n - 1, (3.1)

We define S by assigning to the i - I-st row of E the point Y-2 , to the
i + I-st row - Y2' to the i - 2-nd row the point Y-3, and so on. To the
i-th row we assign the variable point A, Y-l ~ A~ Yl '

Let E' be the matrix obtained from E by replacing the value Eiq = 1 by
0, and S' the corresponding scheme. Since each system of n homogeneous
linear equations with n + 1 unknowns has a nontrivial solution, there exist
polynomials P of degree n, that vanish on S' without vanishing identically.

We fix one of these polynomials P, and study its "Rolle zeros". These
are the zeros of P and of its derivatives which are specified by S', and also
those that can be derived from them by the use of Rolle's theorem.

More precisely, the Rolle zeros of P are defined inductively in k for each
derivative P(k), 0 ~ k ~ n. The Rolle zeros of p(O) are the zeros of P given
by the scheme Sf. Let the Rolle zeros of P(k-l) be known. We define those
of P(k) (and some zeros of the higher derivatives) in the following way.
Let a, fJ be two consecutive Rolle zeros of PCk-l). It may happen that (a, fJ)
contains an even number (counting their multiplicity) of zeros of PCk),

specified by Sf. Then, by Lemma 1, (a, fJ) contains an additional zero of PCk).

If it is possible, we select this zero g to be different from all zeros previously
known. Ifit is impossible (case of degeneracy), then there must be a multiple
root g, specified by S', and this root must have a multiplicity at least one unit
larger than specified. In this case g is added as a root of a corresponding
higher derivative of P. In all cases, we say that g has been obtained by
combining a and fJ.

The Rolle zeros of PCk) are all g obtained in this way together with the
zeros of p<k) specified by Sf. (There may be several possible choices of Rolle
zeros). On (Y-2' h), degeneracy can occur only if a < A< fJ and only if
k = Pi for one of the supported sequences. In case of degeneracy A will
be the Rolle zeros of P(q;+l), 1 =f jo , and if j = 10 , of p<q). If this happens,
we shall say that there is a loss of a zero for the k-th derivative k = Pi ,
and a gain of a zero for k = qi+l (or k = q).

The points (3.1) have been so selected that there is no degeneracy for
g < Y-2 or g~ h . This follows from Lemma 2 (see [4] or Lemma 3 below).

We count the number of Rolle zeros of PCk). For k = 0, P n has exactly
mo = M o ~ 2 zeros. Let k < q. By induction in k we see that p<k) has
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M k - k ~ 2 zeros, unless there is a loss. A loss can happen only at g= ,\,
and then A will be a zero until the next gain. After the gain, there will be
again M k - k ~ 2 Rolle zeros. This will continue until k = q. From here on,
we have to replace M k by M k - 1, since the 1 at the place (i, q) has been
replaced by 0 in the matrix E'. Thus, by (1.4), the number of Rolle zeros
of p<k) will be ~ 1, k ,s:; n - 1. This will be even true in case of a loss, for
then, until the next gain, A will provide a known zero. We have shown:
The number of Rolle zeros of P(k) in (-1, 1) is independent of the position
of A in [y-1 , Yll, except for

(3.2)

For 0 ,s:; k ,s:; n - 1, P(k) has either at least two zeros, or at least the zero A.
Assume now that we somehow have found an additional zero of p<k) in

(Y-2' Y2), or have proved that one of the Rolle zeros (other than A) in this
interval is a double zero. Then the above count gives one additional zero
for each derivative, now even for p(n). Then P must identically vanish,
a contradiction. Thus, all Rolle zeros in (Y-2 ,Y2), other than A, are simple,
and there are no other zeros in this interval.

It also follows that each polynomial of degree n - I that vanishes on 8',
is identically zero. Hence our P are ofdegree exactly n. We norm P by making
the highest coefficient to be 1, and obtain then, for each A, Y-l ,s:; A,s:; Yl'
a unique polynomial P(x, A) = x n + a1(A)xn- 1 + ... + an(A), vanishing on
8'. The coefficients ai are obtainable from n linear equations with n unknown
a1 , ••. , an, which have a unique solution for each A. Hence the determil).ant
of the system is not zero, Y-l ,s:; A ,s:; Y1, so that al ,... , an are continuous
functions of A. Our intention is to study the roots of p<q)(x; A); under certain
conditions they also will be continuous functions of A, and choosing A
properly, we can make one of them equal to A. We then will have a nonzero
polynomial P vanishing on S, and thus prove our theorem.

About the distribution of Rolle zeros of P(x, A) for different A,
Y-l ,s:; A ,s:; Yl , we have the following:

LEMMA 3. For each n, there exists a number 0, 0 < 0 < Y2 - Y1 with
the following properties:

(i) All Rolle zeros ofPin (Y-2 ,Y2) actually lie in J1 = (Y-l - 0, Y1 + 0);
all Rolle zeros that can be derived from Rolle zeros in J1 lie again in J1 •

(ii) Let A = Y-l or A = Yl . Then all Rolle zeros of the interval (Y-l ,Yl)
lie actually in J2 = (Y-l + 0, Yl - 0); all Rolle zeros that can be derived
from these lie again in J2 ; each Rolle zero obtained from two zeros, one
negative and the other positive, lies in J2.
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(iii) Let A = YI . Then all Rolle zeros of the interval (Yl , Y2) are actually
in Ja = (YI , Yl + 0). A Rolle zero derived from a zero to the left of Yl and
one to the right ofYl lies in J2 •

(iv) There is no degeneracy for the Rolle zeros in [-I, Y-2] and [Y2, I];
Rolle zeros derived from a zero in one of these intervals, and a zero outside,
lie in JI •

Proof We prove only (i), the other proofs being similar (compare also
[4]). The proof is by induction in k. For k = 0, there are no Rolle zeros
of Pn in (Y-2 , Y2), except perhaps A. A Rolle zero gof Pn' could come form
a zero ex :(; Y-2 and a zero fJ ;?: Y-I , or from a zero ex :(; Yl and a zero fJ ;?: Y2 .
For all these positions, ex = -I, fJ = Y-I and ex = Yl, fJ = I and the
intervals of Lemma 2 provide a lower and an upper bound for g. It follows
that gE [-I + 2d(1 - YI), I - 2d(1 - YI)]' Similarly, Rolle zeros of P~ ,
derivable from these g, or by combining a point :(; Y-2 with a point;?: Y2 ,
lie in the interval [-I + 4d2(l - Yl), I - 4d2(1 - YI)], and so on. For all k,
Rolle zeros of (Y-2 , Y2) lie in [-I + 2ndn(l - Yl), I - 2ndn(l - YI)]. Thus,
for the purpose of (i), one can take 0 = dn+l(l - 2ndn) < Y2 - YI .

We shall count certain categories of Rolle zeros in [-I, +1], especially
those of Plq). We shall show that the number of some of them is independent
of the position of A in [Y-I, Yd, and that the number of others, in the
contrary, changes with '\. The desired information can be derived from
Lemma 3. We introduce the following notations. Let mk" lk' m~ denote
the number of I's in the k-th column of E, and, respectively, the first i-I,
the i-th, or the last n - i rows. Let Xk', Rk , X; , Rk('\) denote the number
of Rolle zeros of plk), respectively, in the intervals [-1, Y-2], (y-2 , Y2),
[Y2 , I], ('\, Y2); in particular, let Rq = r.

We can show that R k is independent of '\, if k does not belong to the
intervals (3.2). This has been shown above for the total number of Rolle
zeros of Plk). It is sufficient to add that Xk', X; are independent of '\. For
k = °this is clear immediately. For the general case it follows from Lemma
3(iv) that

X£ = (X£-I - 1)+ + m£, X~ = (X~-I - 1)+ + m~ (3.3)

and our statement follows by induction.
All zeros, except '\, of p<q) in (Y-2 , Y2) are simple. This is true also of ,\

itself (,\ can become a Rolle zero of Plq) only as a zero gain), because S'
does not specify ,\ as a zero of Plq+I). For p<q) we can use the following
known (compare [3]) lemma:

LEMMA 4. Let Q(x, A) be a polynomial in x, that depends continuously
on the real argument '\. Ifall zeros ofQ in [a, b] lie in [a + 0, b - 0], 0 > 0,
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and are simple, then their number r does not depend upon A. Enumerated
in order of their magnitude

X1(A) < .. , < Xr(A),

they are continuous functions of A.

We shall now prove that

(3.4)

p:s:.;k:s:.; q. (3.5)

First let Y = Yi' By Lemma 3(iii), Rolle zeros of P(k) in (Yl, Y2) are
obtainable only by combining Rolle zeros of P(k-1) in this interval and Awith
each other or with zeros of [Y2 , 1]. Therefore

(3.6)

where E~_l = I if X;_l > 0, E~_l = 0 otherwise.
For A = Y-1 , Rolle zeros of p<k) in (A, Y2) are described by Lemma 3(ii),

(iii). This time we have

(3.7)

where E~_l = 1 if there are Rolle zeros of p<k-1) in [-1, Y-1], and = 0
otherwise. Thus E~_l?o Ik-1, and from (3.6) and (3.7) we derive
Rk(Y-1) ?o Rk(Yl). Moreover, we have here the strict inequality if for this k,

E~-l = 1 > Ik-1 = 0 (3.8)

Once the properties (3.8) have been established for some k, inequality (3.5)
will continue to hold for all larger k.

The reason for this is as follows. According to Lemma 3(ii), (3.8) produces
a zero gof P(k) in 12 • This g, combined with any other zero, produces again
a zero in 12 • There are zeros to combine with this g, for P(k) has either at
least two zeros, or else A =1= gas a zero. Thus there will be a zero e of P(k+l)

in 12 , This shows that Rk+l(Y-1) > O. But then by (3.7) and (3.6), Rk+1(Y-l)
= Ek' + Rk(Y-l) + E~ - 1 > Rk+1(Yl)' Similarly for k + 2 and so on.

It remains to establish (3.8). We show that for arbitrary A, Y-l :s:.; A :s:.; Yl ,
there is a k < p, for which: A is not a root of P(k), but there are Rolle zeros
of p<k) both to the right and the left of A. Let Ei j = Ei j = 1 be the two

1 1 2 2

elements that support Ei1J = 1. Then P(it) has a Rolle zero to the left of A.,
and P(2) a zero to the right of A, with jl < p, j2 < p. Assume that there are
v, j2 < V < p, for which there is no Rolle zero of P(v) to the right of A. Let v
be the smallest such integer. Then there is just one Rolle zero of P(v-l) to
the right of A. Moreover, A is not a zero itself. But then P(v-l) must have at
least two Rolle zeros, hence there is at least one zero to the left of A.
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Thus, we can assume that for each v, j2 < V < p, there is a zero to the
right of A, and similarly, for each v, jl < V < p, there is a zero to the left
of A. Then we can take k = p - I.

Now it is easy to complete the proof. Consider the curves (3.4), 11- = xi(A),
i = 1,... , r, and the straight line 11- = A. For A = Y-1 there are more curves
(3.4) above the straight line than for A = Y1' Therefore, for some Ao ,
Y-1 < Ao < Y1, the straight line intersects one of the curves. This means
that plq)(X, Ao) has the zero x = Ao . Hence P vanishes on S.
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